math, Number Sense & Numeration

Update: Assessment

I’m interviewing everyone in my class to make sure my report cards are up to date and accurate. It’s been very telling!

I often get one-on-one time with students, but they are usually at different places in their work. During the interview, I’m asking the same 6-8 questions, and talking about the strategies the kids use from beginning to answer. One question in particular is standing out because so far my friends fall into 3 categories.

The question is: I have 7 crackers, you have 9 crackers. How many do we have altogether?

One child said, without pause, “16.” This child was confident, and didn’t falter at all when I asked how he’d gotten the answer so quickly. “I just know things like that.” When I asked other questions he was equally confident and had very efficient strategies.

Another child, same question: “…mumble…mumble…it’s…16?!” I asked for an explanation. “Well, I know 9 is almost 10, so make it 10, then 10+6…yeah…16.” Earlier in the year this child told me he solved problems by reading my mind until he found the answer. I’d say he’s made excellent progress in his meta cognitive and communication skills!

Another child, same question: “….2?” I repeat the question. “7!!!!” I repeat the question. “9!” I take a handful of counters out of the nearby basket & make a pile of 7, and a pile of 9. Then I say, “These are mine. I have 7. These are yours. You have 9. How many altogether?” Response: “If I take away 2, then we’re even!” And “Is it almost time to eat?”

So I put the counters away and write on a piece of paper “7+9” and the child says 16. Rote memorization for the win!

There are three things going on here, and if I made each of these three the team captain I’d have no trouble finding people in the class with similar thinking to fill their teams. Each of the other questions I’m asking further shows the thinking behind the answers I’m getting from the class, including showing me the preferred strategies each child has. It’s so much more interesting than just getting a worksheet filled with answers.

Data Management, Geometry, Measurement, Number Sense & Numeration, Patterning & Algebra

Another One About Reporting

As the end of Winter Break approaches, it’s time for me to sit down and do some planning for the coming weeks.  Reports cards are due at the end of the month and I need to get all of my assessments up to date and my comments organized.  The report card should reflect what the child is capable of at that time, not what they were doing 2 or 3 months ago. I last formally reported on everyone in November. I know there has been growth for everyone, some big and some small.

For math assessment, I am going to re-do the interview I used in September.  I know that for some children I can start in a different place because they have shown mastery in areas I previously assessed.  I will have to go beyond where I left off with them because they have shown growth toward the end of year goals. I also need to add in some geometry and data management questions so I can report accurately on that as well.  I have a lot of anecdotal notes to draw from, but I want to be really sure of what they can do now.

As I have been reflecting on this, I am struck once again with how hard it is to divide math into 5 strands.  I suppose it is easy in the Primary grades to do that with Geometry, Data Managment/Probability and Measurement.  But even at this point they are all starting to blend together. Everything we learn in Number Sense is related to everything we learn in Patterning and Algebra.  I can hardly decide how to mark everyone sometimes because I’m not always sure if the things they need to build understanding about exist in one strand of the curriculum document or another.  I have to consult it every time because in my mind it’s all mashed together into “math”. Everything we do in Number Sense is related to what we do in Measurement too, but it’s a little easier to seperate out the skills that will be reported on.  Same for Geometry and Data Management/Probablity.

Here is one example of this from the Grade 2 curriculum document (2005):

  • identify and describe, through investigation, growing patterns and shrinking patterns generated by the repeated addition or subtraction of 1’s, 2’s, 5’s, 10’s, and 25’s on a number line and on a hundreds chart (e.g., the numbers 90, 80, 70, 60, 50, 40, 30, 20, 10 are
  • count forward by 1’s, 2’s, 5’s, 10’s, and 25’s to 200, using number lines and hundreds charts, starting from multiples of 1, 2, 5, and 10 (e.g., count by 5’s from 15; count by 25’s from 125);
  • count backwards by 1’s from 50 and any number less than 50, and count backwards by 10’s from 100 and any number less than 100, using number lines and hundreds charts (Sample problem: Count backwards from 87 on a hundreds carpet, and describe any patterns you see.);

Two of those are from the Number Sense strand and one is from P/A.  But I teach them simultaneously. And if a child is having trouble with skip counting is it because s/he isn’t understanding the patterns associated with the skip counting, or is having trouble memorizing the order, and if they seem to not be having any trouble is there some rote counting, or is the child processing the numbers and thinking about the patterns?  It’s tricky to assess sometimes. And sometimes it isn’t. For instance, if a child can say, “2, 4, 6, 8, 10” but then stops and can’t figure out what comes next, I know the first 5 terms are acutally just counted by rote. Or if a child can count by 2’s even further, but then isn’t able to do this when there are actual things to be counted, I know there has been some memorizing. And if a child gets to ten, then pauses to work it out in his head, comes up with 12, then slowly with 14, and so on, I know there is some understanding.  It’s tricky to boil all of that down to a letter grade.

Someday when I open my own school and can make my own rules, I am not going to assign letter grades to Primary kids ever. The report cards at my school will be all about the comments.  And I will definitely not divide math up to strands!  But for now, I’ll sit down and go through my assessment and the curriculum documents, then I’ll sit down with everyone in the next 2 weeks or so and ask them the questions I’m wondering about.  And then I’ll sit down and give them all a grade that reflects what they can do.  Easy, right?

 

Guided Math, Number Sense & Numeration, Number Strings

Addition of double digit numbers

There were about 50 of these on our whiteboard at different times over the last few weeks. We’ve gotten pretty good at adding the tens using mental math strategies. 20+20 -> 2+2=4, so 20+20=40…no problem! But it’s was time to move on!

I really wanted everyone to learn how to effectively use a number line. We’ve been working our way through a Context for Learning kit called “Measuring for the Art Show”. I demonstrated it about 1 billion times. First we used cubes to make a line, then we annotated this on some cash register tape, and then we moved to the whiteboard. Finally, I gave everyone some problems (from the kit) and some paper they could use for drawing the number lines.

As I walked around I could see lots of kids with lots of right answers but no number lines. “How are they doing this??” I wondered. So I asked. And I was amazed! So many of them were using the mental math strategy of splitting. They thought about how many ones there were in each number, and how many tens were in each number, then they found a total.

But the number line isn’t the go-to strategy yet. So I’m annotating the problems two ways now. The way lots of them are doing it, and the way some of them are doing it. Both are ways I hope all of them can do these problems eventually.

Our next step…my next step…is to organize into small groups (I know…back to some guided math. It keeps coming up!) I need to help the kids who are splitting learn the number line, and help the number line kids do some splitting and help the “I have no idea what to do kids” get some ideas.

I’m ALWAYS happy to reach Winter Break, but it always comes about a week before I’m ready. I don’t want to interrupt our math learning. But I’m confident the stuff we’re doing now will stick. I won’t have to start from scratch on January 7.

Here is more work from today:

math, Number Sense & Numeration

Understanding vs. Memorizing

When I was in elementary school my teachers regularly asked us to complete Math Mad Minutes.  These were sheets of math problems, usually just 1-digit numbers, and we had to complete as many as we could in just one minute.  Some years we did addition and subtraction, some years multiplication and division.  Sometimes we even had to do a Mad Minute that had a variety of operations on it.  When I first started learning how to become a teacher, my mentor teacher used these.  Children started with a sheet that had 20 problems, and if they could do all of those in a minute they upgraded to a sheet that had 30 problems!  The super fast kids got a sheet with 50 problems.

I hated doing these.

I remember having only one strategy:  I went through the Mad Minute, week after week, and did all the problems that had 0, 1, or 2 for an addend, subtrahend, or factor.  If I saw a number along the way that was a “double” I would do it (3+3, 6×6).  Basically, I memorized the location of the problems for which I knew an answer.   I have a clear picture of myself sitting in Mr. Goodrow’s 6th grade class and reciting to myself the answers to the top two rows of problems.  I was certainly memorizing a bunch of stuff but I wasn’t actually memorizing anything useful beyond the Mad Minute.

True confession:  In my first classroom as a teacher, I finally “memorized” the times tables for good. Nobody gave me a sticker when I could recite them all, but I did it anyway.  I was teaching math on a rotary to 90 fifth grade students every day.  I have a clear picture of myself standing at the whiteboard writing answers to multiplication problems and realizing there was a pattern to the answers.  I was 27. I was university-educated.  I feel quite confident nobody had every told me about these patterns.  It opened a door for me.

What if I had understood this sooner?  Sticking with the multiplication example (though I could also talk about how understanding addition and subtraction is equally important!) if I had understood these connections and patterns I’m sure division, fractions, decimals, algebra and statistics would have all come much easier for me.

I’m listening right now to a Ministry of Education “Town Hall” call.  People are advocating for spending the Primary grades memorizing facts. The thing is, nobody ever says, “In the Primary grades kids should just memorize words.  We’ll teach them to understand words, read sentences, and write sentences once they get to the junior grades.”  Sounds ridiculous, right?

So if you are at home at night and want to work on helping children memorize math facts, then go for it.  But in class, I have some really important foundations of understanding to build. I have concepts to connect, I have patterns to point out, and I have number sense to build. You will not find any Mad Minutes.  Do I want them to have facts memorized?  Absolutely!  Are we actively working toward that?  FOR SURE! But I’m not going to focus on this at the expense of spending time on building understanding.

Geometry, math, Math Workshop, Number Talks

Real Geoboards vs. Virtual Geoboards

This past week we’ve been doing some geometry work in class.  The grade 2 curriculum expectations for geometry are fairly simple:  name, sort and make 2D and 3D shapes.  In general, children arrive in grade 2 already knowing most of these.  The more common the shapes are in the natural environment, the more likely this is true.  Octagon and hexagon usually give everyone a hard time with their tricky names, but by the end of grade 2 few children can’t recall these names.  In grade 3, we have to do a few more things. The vocabulary is increased (quadrilateral, angles) but again other than folding and unfolding nets of 3D solids, it’s nothing too complex.  Of course, I say that from this point of view – some kids do find it a bit tricky.  In all, however, it’s about 1 week’s worth of expectations.  I like to teach them early on because there are a lot of problem solving opportunities that can involve geometry and once we have the vocabulary learned the problem solving comes more easily.

This week I had rubber bands on hand.  That’s not actually something that happens all the time.  Since we had them, I pulled out the old geoboards.  Lack of rubber bands is actually one of the main reasons I don’t always pull them out.  The virtual geoboards, available here, here and here, are so much more reliable.  And nobody can shoot a virtual geoband across the room at somebody.

In the activity shown below, our Friday lesson, students were asked to make some shapes according to a rule.  Then their classmates had to figure out the rule.  Was the rule: shapes that have 3 sides?  Shapes with 4 corners?  Shapes I enjoy making because they create cool patterns? Here are some of our results:

A few years ago I remember reading an article about how important it is for students to have a real experience with a manipulative before they move to the virtual version.  I tried to find that this morning and couldn’t.  My brain doesn’t remember the source!  So I put it out to my virtual PLN (Professional Learning Network) on Twitter, and found a lot of teachers agreeing with my thinking. Reflecting on our week today, I was so glad that I had used the real geoboards.  There was some really interesting stuff that happened.

First, students were making shapes of different sizes over and over in different ways.  On the apps, they tend to get busy playing with other tools – like changing the colour of their geobands, or colouring the shapes in with a variety of colours.  They get focused on the wrong things and come up with rules like:  Shapes that are orange.  And I’m sorry, but orange is not a geometric attribute.

Second, I noticed that some children were struggling to stretch the bands across the pegs.  Some of the rubber bands are smaller than others, so this became a problem solving challenge.  I feel like they were motivated by the task to work through the challenge and find a new rubber band or change the perimeter of their shape.  This simply doesn’t present as a challenge to be worked through in the virtual environment. I had forgotten about this part!  Developing learning skills needs to be embedded in every part of our day, and I’m glad they got this chance to work on some problem solving skills.

Finally, there were some social things that we could work on.  Sharing is always an issue for 6 and 7-year-olds. They had to cooperate and collaborate to share the rubber bands on their table, and to decide who would get which geoboard.  I tried to make sure that every board at least matched the other boards in a group, but I didn’t always make that happen.  Again, students had to talk through this because everyone wants the one that is different, and therefore special.

Now that we have spent some time with the geoboards,  they can become one of the activities students can do during a Math Workshop session.   I can put them on a table with some task cards, or the students can request them to help solve a problem.  When we move on to perimeter and area (after we spend some time working with number lines for the next 3 weeks!) I can incorporate questions about shapes and feel confident that everyone knows the shape, and can work with the shape.  And I can add some

 

math

Games

Last week I wrote about using the 100 board in class. There are many games that can be played with a 100 board, and all of them help strengthen a child’s number sense.

I recently bought some 100 board games from Arnold Tutoring, and we’ve been having a great time with them at home. We like to play all sorts of games, so it was easy to convince my children to play these!

Both games were definitely worth the money! I can download a 100 board for free, but by the time I copy, laminate, buy all the game supplies and a nice container to keep it all in, it will have cost me a bit. Plus: I have no time! So the games were definitely worth the $— I spent. And I didn’t have to pay for shipping. And I love internet shopping. Really, this was more like an investment in my quality of life. (Seriously!)

“What’s my number?” is like one of our favourite games, which is called “Guess Who?” Except this is played with numbers instead of people. “Add to 10” is a bit tricky for us right now, but we easily changed it to suit us (my son is good with numbers, but he’s only in grade 1, so not quite ready for double digit addition.). We rolled the very nice 0-9 die, and then talked about our strategy for moving forward on the board. If nothing else the game would have paid for itself just using it this way. But I know we’ll get to more involved math before the end of the school year. This game set will grow with us.

These are games meant to replace math worksheets. They are for families that want to strengthen their child’s math skills, and have a good time doing it.

math

The 100 Chart

It used to really bother me when my students filled out a hundred chart in random order. I wanted them to start at and finish at 100, demonstrating that they can count in order, and that they could print all the numbers. But I’ve changed my thinking on this.

Here is some work we did this week:

In each of these examples, the child is following a pattern. It’s not always the standard counting pattern usually it’s the patterns in the one’s place.

This tells me more about my growing mathematicians than whether or not they can count to 100.

Next week we are going to fill in the numbers from 101-200. I can’t wait to see what patterns they continue to use to fill out the chart! And I really can’t wait for the conversations we’ll have around this!